An Analysis of Selection Models for Incomplete Longitudinal ClinicalTrials Due to Dropout: An Application to Multi-Centre Trial Data
نویسنده
چکیده
A common problem encountered in statistical analysis is that of missing data, which occurs when some variables have missing values in some units. The present paper deals with the analysis of longitudinal continuous measurements with incomplete data due to non-ignorable dropout. In repeated measurements data, as one solution to a such problem, the selection model assumes a mechanism of outcome-dependent dropout and jointly both the measurement together with dropout process of repeated measures. We consider the construction of a particular type of selection model that uses a logistic regression model to describe the dependency of dropout indicators on the longitudinal measurement. We focus on the use of the Diggle-Kenward model as a tool for assessing the sensitivity of a selection model in terms of the modeling assumptions. Our main objective here is to investigate the influence on inference that might be exerted on the considered data by the dropout process. We restrict attention to a model for repeated Gaussian measures, subject to potentially non-random dropout. To investigate this, we carry out an application for analyzing incomplete longitudinal clinical trial with dropout by using a practical example in the form of a multi-centre clinical trial data. Received date: 29/08/2015 Accepted date: 20/11/2015 Published date: 30/12/2015
منابع مشابه
A Comparative Review of Selection Models in Longitudinal Continuous Response Data with Dropout
Missing values occur in studies of various disciplines such as social sciences, medicine, and economics. The missing mechanism in these studies should be investigated more carefully. In this article, some models, proposed in the literature on longitudinal data with dropout are reviewed and compared. In an applied example it is shown that the selection model of Hausman and Wise (1979, Econometri...
متن کاملA Non-Random Dropout Model for Analyzing Longitudinal Skew-Normal Response
In this paper, multivariate skew-normal distribution is em- ployed for analyzing an outcome based dropout model for repeated mea- surements with non-random dropout in skew regression data sets. A probit regression is considered as the conditional probability of an ob- servation to be missing given outcomes. A simulation study of using the proposed methodology and comparing it with a semi-parame...
متن کاملDevelopment of a QFD-based expert system for CNC turning centre selection
Computer numerical control (CNC) machine tools are automated devices capable of generating complicated and intricate product shapes in shorter time. Selection of the best CNC machine tool is a critical, complex and time-consuming task due to availability of a wide range of alternatives and conflicting nature of several evaluation criteria. Although, the past researchers had attempted to select ...
متن کاملExtension of Logic regression to Longitudinal data: Transition Logic Regression
Logic regression is a generalized regression and classification method that is able to make Boolean combinations as new predictive variables from the original binary variables. Logic regression was introduced for case control or cohort study with independent observations. Although in various studies, correlated observations occur due to different reasons, logic regression have not been studi...
متن کاملA new parameterization for pattern mixture models oflongitudinal data with informative dropoutMichael
Pattern mixture models are frequently used to analyze longitudinal data where missingness is induced by dropout. For measured responses, it is typical to model the complete data as a mixture of multivariate normal distributions, where mixing is done over the dropout distribution. Fully parameterized pattern mixture models are not identiied by incomplete data; Little (1993) has characterized sev...
متن کامل